
Data Selection Tutorial

Lukas Arnold, Thiago Bezerra

Columbia University, University of Sussex

February 9, 2021

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 1 / 34

Concept

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 2 / 34

Setup environment

See
Documentation: https://github.com/DUNE-
DAQ/appfwk/wiki/Compiling-and-running-under-v2.2.0
Tutorial from Carlos Barajas:
https://indico.fnal.gov/event/47545/contributions/207745/attachments
/139624/175288/Minidaq_app_Tutorial_5.pdf

Let’s define basic parameters:
DUNE DAQ version: export VERSION=dunedaq-v2.2.0
Working directory: export MYDIR=dunedaq

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 3 / 34

Setup environment

Setup daq-buildtools

$ git clone https://github.com/DUNE-DAQ/daq-buildtools.git
-b $VERSION
$ source daq-buildtools/dbt-setup-env.sh
Expected answer: Added /your/path/to/daq-buildtools/bin to PATH
Added /your/path/to/daq-buildtools/scripts to PATH
DBT setuptools loaded

Setup working directory

$ mkdir $MYDIR
$ cd $MYDIR
$ dbt-create.sh $VERSION
This may take a couple of minutes and will create your working area in the
$MYDIR location.

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 4 / 34

Setup environment

DUNE DAQ consists of several mod-
ules. The most important one is
appfwk that provides the basic func-
tionalities.
The data selection is based on
two modules: DAQDuneTrigger and
DuneTriggerAlgs.

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 5 / 34

Setup environment

The source code for the modules are located in sourcecode:
$ cd sourcecode
Now we use a couple of modules:
$ MODULES="appfwk DAQDuneTriggers DuneTriggerAlgs cmdlib ers
filecmd listrev restcmd"
Let’s check out each of these. Please note that $VERSION is checked out
only when it exists, and the DS repos are not part of DUNE-DAQ yet.
$ for MODULE in $MODULES
> do; git clone https://github.com/DUNE-DAQ/$MODULE.git
> [[-d $MODULE]] || git clone
https://github.com/thiagojcb/$MODULE.git
> cd $MODULE
> git fetch;git checkout $VERSION;git checkout he;git checkout moo
> cd ..; done
You should now have a complete working environment!

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 6 / 34

Example

In this tutorial, we will use
$MYDIR/sourcecode/DAQDuneTrigger/Plugins/
TriggerPrimitiveFromFile.cpp as an example.
It simply takes a (shorter) waveform from a csv file indicated by the user,
formatted as follows:

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 7 / 34

moo

We want our module and our plugins to be configurable. This can be
done using either python or jsonnet using moo. There are three different
moo-based file:

the plugin schema
the plugin make
the app / command facility

Documentation:
https://brettviren.github.io/moo/moo.html
Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 8 / 34

Schema file

schema/test_schema.jsonnet

local types = {
pathname : s.string("Path", "path",

doc="File path, file name"),

conf: s.record("Conf", [
s.field("filename", self.pathname,

"/tmp/example.csv",
doc="File name for trigger primitives"),

], doc="TriggerPrimitiveFromFile configuration"),
};
moo.oschema.sort_select(types, ns)

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 9 / 34

Calling schema objects

plugins/test_plugin.cpp
...
void TriggerPrimitiveFromFile::do_configure(
const nlohmann::json& config /*args*/)
{
auto params = config.get<triggerprimitivefromfile::Conf>();
filename = params.filename;

}
...

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 10 / 34

Compiling the schema

in $MYDIR/sourcecode/DAQDuneTriggers

Should be done in build process at some point.
$ moo -g ’/lang:ocpp.jsonnet’ -M schema -A
path=dunedaq.DAQDuneTrigger.triggerprimitivefromfile -A
ctxpath=dunedaq -A
os=DAQDuneTriggers-TriggerPrimitiveFromFile-schema.jsonnet render
omodel.jsonnet onljs.hpp.j2
$ moo -g ’/lang:ocpp.jsonnet’ -M schema -A
path=dunedaq.DAQDuneTrigger.triggerprimitivefromfile -A
ctxpath=dunedaq -A
os=DAQDuneTriggers-TriggerPrimitiveFromFile-schema.jsonnet render
omodel.jsonnet ostructs.hpp.j2
Include the Nljs.hpp file in the plugin source code!

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 11 / 34

Create the make

plugins/test_make.jsonnet

{
conf(filename) :: {

filename: filename,
},

}

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 12 / 34

Creating the app

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 13 / 34

Creating the app

Includes
local moo = import "moo.jsonnet";
local cmd = import "appfwk-cmd-make.jsonnet";
local TPsGenerator = import "test_make.jsonnet";

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 14 / 34

Creating the app

Queues
local queues = {

TPsQueue: cmd.qspec("TPsQueue",
"FollyMPMCQueue",
1000),

TAsQueue: cmd.qspec("TAsQueue",
"FollyMPMCQueue",
100),

TCsQueue: cmd.qspec("TCsQueue",
"FollyMPMCQueue",
10),

}

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 15 / 34

Creating the app

Plugins
...

TPsGenerator: cmd.mspec("TPsGenerator2",
"TriggerPrimitiveFromFile",
[cmd.qinfo("output",

"TPsQueue",
cmd.qdir.output)]),

TAsGenerator: cmd.mspec("TAsGenerator",
"DAQTriggerActivityMaker",
[cmd.qinfo("input",

"TPsQueue",
cmd.qdir.input),

cmd.qinfo("output",
"TAsQueue",
cmd.qdir.output)]),

...Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 16 / 34

Creating the app

Configuration
[

cmd.init([queues.TPsQueue,
queues.TAsQueue,
queues.TCsQueue],

[modules.TPsGenerator,
modules.TAsGenerator,
modules.TCsGenerator])

{ waitms: 1000},
cmd.start(40){ waitms: 1000},
cmd.stop(){ waitms: 1000},

...

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 17 / 34

Creating the app

Configuration
...

cmd.conf(
[cmd.mcmd("TPsGenerator3",

TPsGenerator.conf("/tmp/csv_file.csv")),
cmd.mcmd("DAQTriggerActivityMaker"),
cmd.mcmd("DAQTriggerCandidateMaker"),)]

]

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 18 / 34

Creating the app

Compiling the command facility
Let’s compile the app to provide a command facility
$ moo compile test_app.jsonnet > test_compiled.json

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 19 / 34

Creating the app

Compiling the module
Each module has a CMakeLists.txt file for build instructions.

cmake_minimum_required(VERSION 3.12)
project(DAQDuneTriggers VERSION 2.0.0)
find_package(daq-cmake REQUIRED)
daq_setup_environment()
find_package(appfwk REQUIRED)
find_package(DuneTriggerAlgs REQUIRED)
daq_add_plugin(TriggerPrimitiveRadiological \

duneDAQModule LINK_LIBRARIES appfwk::appfwk)
daq_add_plugin(TriggerPrimitiveFromFile \

duneDAQModule SCHEMA LINK_LIBRARIES appfwk::appfwk)
...

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 20 / 34

Building DUNE DAQ

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 21 / 34

Building DUNE DAQ app

Let‘s build the DAQ App! $ dbt-setup-build-environment
$ dbt-build.sh –install

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 22 / 34

Running!

Let‘s run!
$ dbt-setup-run-environment
$ daq_application -c test_compiled.json
Now the commands init | conf | start | stop should appear. Let’s
run the commands in this order to test the commands!

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 23 / 34

Plugins

Introduction to the algorithms/plugins of DAQDuneTriggers and
DuneTriggerAlgs.

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 24 / 34

What each module is in charge of?

DuneTriggerAlgs
Define trigger “objects”

Trigger Primitive
Trigger Activity
Trigger Candidate
Trigger Decision (not used for now)

Define algorithms
Maker (finder) for each of the object

DAQDuneTriggers
Each algorithm is it’s own DAQProcess
Defines queue, etc

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 25 / 34

Data structure (TP, TA, TC) on DuneTriggerAlgs

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 26 / 34

Intermission (I) - Background info

Module is a skeleton/back bone, built with a SNB approach in mind.

Brett’s diagram

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 27 / 34

Intermission (II) - Basics on SNB triggering

TAs are formed by clustering TPs in time and space (channel).

At least two parameters needed:
Channel tolerance between TPs
Time tolerance between TPs

Additionally we also have number of TPs in a TA as a selection criteria.

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 28 / 34

Intermission (III) - Basics on SNB triggering

TCs are formed by simply counting TAs in a time window.
At least two parameters needed:

Size of the time window
Number of TAs in the time window

→ Example of a simple TA and TC finder:

DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerActivityMaker_Supernova.*
DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerCandidateMaker_Supernova.*

The finders has a pure virtual function, operator(), where the algorithmic
part happens

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 29 / 34

Appfwk interface (DAQDuneTriggers)

Where the DAQProcess are implemented and calling these operator()
functions
Example class (DAQDuneTriggers/plugins/DAQTriggerActivityMaker.cpp):

Fills and consumes queues of trigger objects (listrev based)
Holds and parses all configurations of the algorithms previously
defined.

For example, in case of Supernova TC maker, we might change the
threshold in number of TAs at which the trigger is emitted
Working on going on this front for new appfwk version

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 30 / 34

Example: TC (I)

operator() call at
DAQDuneTriggers/plugins/DAQTriggerCandidateMaker.cpp

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 31 / 34

Example: TC (II)

operator() definition at
DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerCandidateMaker_Supernova.hh

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 32 / 34

Example: TC (III)

operator() description at
DuneTriggerAlgs/dune-trigger-algs/Supernova/TriggerCandidateMaker_Supernova.cc

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 33 / 34

What to do if you want to use this module?

You become a collaborator on the module development
We want to agree on a minimum version so it can be incorporated on
DUNE-DAQ repository, and update conventions.

You need to write your version for all chain (TP→TA→TC):
TP: Create your own random generator or csv file
TA: Create your maker/finder, if current not suitable (probably isn’t)
TC: Create your triggering condition

Lukas, Thiago (Columbia, Sussex) Tutorial February 9, 2021 34 / 34

